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Self-similar sequences and universal scaling of dynamical entropies
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Symbol sequences play a prominent role in the context of symbolic dynamics. Important features of a
dynamical system are reflected by related statistics of subsequences. A dynamical behavior giving rise to a
self-similar attractor and universal scaling relations, expressed by critical exponents, will lead to self-similar
statistics of subsequences. In the present paper we show how self-similar distributions of subsequences, i.e.,
temporal self-similarity, can be connected with a scaling relation for dynamical entropies. Moreover, the effect
of slightly perturbing perfectly self-similar sequences by contaminating them with noise is investigated. The
achieved results are of importance for physical processes marking the borderline between order and chaos.
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[. INTRODUCTION string. Correction formulas designed to cure this disease
[12,13 do not increase the range of reliable estimation by
The statistical analysis of chaotic or stochastic systemerders. However, since we will always use an analytical ap-
usually employs standard tools such as correlation functiorroach to derive probability distributions, we do not have to
power spectrum, or time-dependent standard deviation. TH&ce this problem here.
method of symbolic dynamicgL] provides the background The prediction of am-word is connected with an average
for more sophisticated techniques, especially those related {#certainty quantified by the Shannon measure and which
informational measures, e.gu-block entropieg2], Renyi Wil be named then-block entropyH,,
entropies[3] or transinformation[4]. Moreover, thesealy-
namical entropiegan be applied to symbol sequences which H,:=— > pP(ig, ... iplogyp(iq, ... ip).
are not directly related to dynamical systems but which are (ig,...dipeA”
found instead as the result of evolutionary processes, e.g., the (1)

DNA, music, or texts. By defining a unique mapping of sym-yye choose logh bits as the unit of information. This
bols onto real numbers correlation functifi, power spec- i ice is favorable since then the inequality=Bl,<n
trum [6,7] and time-dependent standard deviaishcan be  514s. n
translated but the freedom of choosing the mapping function 5 quantity derived from then-block entropies is the

introduces some arbitrarinef8]. Throughout this paper we (n-)average uncertainty per symbdiO], denoted by
will concentrate on the concept ofblock entropies which — H(n):=H, /n. Its limit for n— is named thentropy of the

essentially is based on Shannon’s measure of syntactical idpurce[14],
formation assigned to messadés$)].

Let A={a,, ...,a,} be a set of symbols which we will h:=limH(n). 2
also call thealphabet In the context of symbolic dyn- n—e
amics subsequences(...,,) A" of length n, also

This quantity is closely related to tHélmogorov-Sinai en-
%ropy (KS) [15,1€ of a dynamical system. For a wide class
f systemg17] the KS coincides with the sum of positive

namedn-words have to be regarded as sampled trajector
segments of lengthr (stroboscopic observation with a time
window T.)' Assuming the §ample sequence tq be p.roduce yapunov exponents according to a famous theorem by
by a stationary and ergodic sourfEL] —which is a direct Pesin

consequence of stationary and ergodic dynamics —we can :

) ; o . Furthermore, we can define the conditional entropies, de-
do simple word counting, hence, achieving a relative fre'noted byh
guency distribution fon-words. The relative frequencies are n
used to estimate the underlyimyword probabilities, in the hy:=Hn,.1—H, (n=1.2,...). (3)

following denotedp(iq, ... ,ip).
We note in passing that in practice the finite lengtlof ~ We supplement this definition Byy: =H4. Theh, are inter-

the sample string poses a severe problem for this estimatiopreted as the average uncertainty linked with the prediction

The reason is a combinatorial explosion of the number obf the symboli,,; given knowledge oh preceding states

generally possible words" (respectively the effective num- i, ... ,i,. Correlations existing between the subsequence

ber of words\"" [11]) which has to be outperformed by the (iq, . ..,i,) and the symbol,.  will reduce this average

number [O(L)] of n-words excerpted from the sample uncertainty, hence, the series lf will decline when in-
creasing the range of noticed prehistory. It can be shown
that the limit ofh, for n—« coincides with the limit in(2),

*Electronic address: janf@summa.physik.hu-berlin.de i.e., lim,_.h,=h.
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The decline of the series ¢, approachindn is a charac- This formula impliesh=0 and, by virtue of the Pesin theo-
teristic feature of symbol sequences and dynamical systemeem, is in agreement with the zero Lyapunov exponent.

respectively, which produce them. ForMarkov source of Ebeling and Nicolis[2] supplemented Grassberger's re-
order m[18]—which is defined by the following property of sult for all values ofn in between two such word lengths.
conditional probabilities: The basis for their result were empirical rules derived by
. ] . . ] ] observing typical sequences. Numerical simulati¢@§]
Plintalis, i) =P(nsalin-m, ... i) (Yn>m) confirmed their theoretical formulas. The fundamental obser-

(4 vation was an overall decay of thg, which is slower than
valid for all (i, ..., .1) e A" —it can be prover{18] exponential, namely, according to anlAw. Hence, this se-
thath.=H 11—,H _ F:ﬁolds true for alln=m. This moti- _ duence not only possesses an infinite memory but, moreover,

n m+ m = .

vates the definition o as thememory of the sourc&ze- the CEM.yiequ _the value inﬁnity.
falusy and co-worker§19] shared this attitude. A quite similar observation was made by Grangg],

The scaling behavior oft(,—h) is directly related to the who ipvestigated a binary sequence which can be prqquced
effective measure complexit€ey,), defined by Grassberger applying the method of symbolic dynamics to the critical

[20] circle map[28,29. His results were achieved making use of
' an equivalent grammatical composition rule for the se-
i quence:
Cem:= h,—h). 5
EM ngo( n—h) ©) by = “1"
bl — 1(111’

As was noticed by Grassberd@0] and Szefalusy[21,22, b. - = bob (z=1.2 ) )
an exponential decay of théa(—h) is the typical case, i.e., zrl = Pz Vel ek
(h,—h)~exp(=yn). The corresponding decay rajecan be  Here, 7 is a recursion index anth,>b,_, symbolizes the
expressed in terms of a special rige entropy, namely, ¢oncatenation of the symbol strings and b,_;. It is a
y=2Kj (for piecewise analytic 1D mag1], see alsd22]).  simple but important observation that the length of the se-
For such systems a Markovian approximation of SUff'C'e”“yquencebZ equals the Fibonacci numbEt. ;. The sequence

high orderm (4) is rather effef;give. Then it is reasonable 10 ;- clearly exhibits a self-similar structure: performing the
define the inverse decay raje ~ as an effective memory.  repjacement

An exceptional behavior is found for systems which mark
the borderline between order and chaos. They play an impor- “0” — “1”and “1” — “10” (9)
tant role in the framework oflynamical phase transitions
[23]. Comparatively strong correlations — which are not asexactly yields the same sequence. The replacement scheme
trivial as in the case of a periodic sequence — exist over 49) motivated the nameabbit sequencg¢30].
wide range and cause the conditional entropies to decay Gramss’ derivation showed that the overall scaling behav-
slower than exponentially K;=0!). Usually an infinite ior of the H, again was of a log, type which leads to
memory is assigned to systems of that kind. Typical proha~n~". This similarity arouses suspicion that the binary
cesses giving rise to such a behavior are of the intermitterfteigenbaum sequence should be reproducible in close anal-
type[23]. As will be shown below, a subexponential scaling 09y In fact, we could specify the following composition rule
of (h,—h) can be derived for systems exhibiting the phe-

nomenon of temporal self-similarity, e.g., for the logistic ap = 1
map at the period doubling accumulation point. It was con- a;, = "107, (10)
jectured by Ebeling and Nicoli§2,24] that an infinite a,41= a,a, °a,.; (z=1.2,..)).

memory generally is encountered in processes related to in- ,
formation processing systems. Here, the length of the sequeneg equals the values?2

Performing the two replacement schemes
II. CONSTRUCTING SELF-SIMILAR SEQUENCES “0” — “11” and “1” — “10" (11)

The starting point for our considerations is the celebrate
logistic map at the accumulation point

roo:3-569 945 6 ey ((011 — “11” and 1(111 — u0111 (12)

Xn+1= F(Xn) =1Xn(1=Xy). (6)  again leaves the infinite sequenag invariant. These re-

. placement rules can be regarded as special types of the so-
The attractor possesses a self-similar strucf@f8. Choos-  giled context-free Lindenmayer systefi@l] which have

ing the bipartition[0,5]— “0” and (3,1]— “1” the sym-  been investigated as a model for spatidl dpectra in5].

bolic dynamics yields théinary Feigenbaum sequencA We point out that composition rules analogoug&pand

first entropy analysis of such a sequence was performed bi0) do not necessarily guarantee a behavior of theh,,.
Grassberger. For word lengtis=2% he derived a formula An example demonstrating this clearly is given by

for the n-block entropieg 20] which reads

dp = “0”1
3n al — 1(111’ (13)
ank—|092(7). (7) Ay4q = 8, 1°a,a, ;.
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FIG. 1. A schematic plot of self-similar rank-ordered word dis-
tributions of the binary Feigenbaum sequence for different values of

n. The self-similarity relates distributions for word lengths . L
oK, ok+1l gy ok=1_ 35 ok ok+1_ ok+2. FIG. 2. Schematic sketch of general self-similar rank-ordered

word distributions; dark shaded regions: root wdtdp), m off-

. o - . springs(bottom).
This composition rule produces the periodic string prings( m

(*01”) * which yieldsho=1 and{hp},_1, .. =0.

The empirical rules characterizing the binary Feigenbau
sequence formulated by Ebeling and Nicdld can be un-
derstood from the grammatical composition ru{&g) [32]; _ _
this connection basically rests on three lemm@tealogous Ho, an0+(k ko)log,m. (149
to two lemmata found by Gramg®27]). In particular, the o .
rank-orderech-word distributions can be derived explicitly. This is exactly the type of relation for th, already de-
The basic structure of the series of these distributions igsived for the binary Feigenbaum sequence by Grassberger
sketched in Fig. 1. We see that self-similarity relates distri{20]: Namely, we only have to realize that in this special case
butions for word lengths '2-2K*1 3x2k"13x2X  m=2,n=g(k)=2% ko=1, and\ =2, thus arriving at
2k*1,2k*2 The transition between two such related distri-

A few lines of calculation yields the following relation for
"Mhe n,-block entropies:

butions is achieved simply by rescaling the horizontal and Hp, —2k=Hz+(k—1)log,2 (15
vertical axis by a factor 2 ang, respectively(and vice
versa. This observation is at the heart of the scaling relation ok
for the n-block entropies and will be elaborated in a gener- =I0923+I0925 (16
alized approach in the next section.
3N,
IIl. GENERAL SELF-SIMILAR DISTRIBUTIONS =log, 7) (17)

In order to generalize the notion of self-similar rank- . . .
ordered word distribution we list the following basic proper- -6 We perfectly recove(7). We point out that the logarith-
ties. mic dependence of the,-block entropies is a direct conse-

(i) We have a series of word lengths, denoted byquence of the fact that the,, relating self-similar word
{nk}f:ko, which is defined by a function of the indéxi.e., g|sir|but|?vnsl2 str(a:tcfllaccoT|ng to an exponential I_aw, €.,
- «=9(k)~2=k=g *(n)~log,n,. For the binary
Ne=9(k). , - Feigenbaum sequence this function corresponds to

(i) For everyroot word of length n, with probability ¢y~ 2k and for the rabbit sequence the series of Fibonacci

P(ia, - ’ In) t.rlere existm. oﬁsprirlgsof Ier?gth N1, 8- numbers can equivalently be represented by the function
noted g, ....n ). ---.(T, - in, ), with equal prob- g(k)=_1(¢§(y-k— Y9 with yi(lﬁ—l)/?. This explains
ability p(iy, - . . .in,)/m. Notice that now the probability dis- the infinite memory, i§, —h) ~n"", found in both cases and

tributions are not restricted to the case of piecewise constaffucidates its universal character. , - ,

functions as in the case of the binary Feigenbaum sequence. W€ can go further and ask under which conditions we will

A schematic sketch of such general self-similar distributiondind a scaling law of the typel, ~ yn; this square root type

is depicted in Fig. 2. growth law has been achieved first by Hilb¢Bg] and sub-
We realize that the root word’s probability is equally dis- sequently by Ebelinget al. [2,4], analyzing realistic texts.

tributed among iten offsprings. It is important to notice that The constructive answer is that we have to inquire the pos-

the termsroot word andoffspringsare not necessarily meant sibility of composing sequences which yield self-similar

in the context of a grammatical root-branching relation. Therank-ordered word distributions obeyimg~k?. However,

reason is that entropies never care about a permutation o example has been constructed yet and it seems very likely

labels which allows for the rank-ordering. In fact, the rela-that creating sequences in a fashion analogoy8)tor (10)

tion between a root word and its offsprings is governed by mostly [see above exceptiofl3)] results in exponentially

m replacement operations, e.¢11,12, leaving the infinite  growingn,, hence, yielding logarithmic scaling laws for the

seguence invariant. Hp,.
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information source symbol flip original words, i.e., words found in the unaffected sequence.
with probability Their number is denoted by, and their probabilities will be
X, el changed fronpg: =N, * to po(1—€)". The next group will
comprise all words which are created by flipping only one
X, symbol. Their probabilities will be ) e(1—¢€)"" 1. The
probability for each member of this group essentially is di-
..0101110... — ..010 0110... ‘ minished by a factore. The number of words which are
perfect sequence noisy channel created in this way will be denoted ;. The line of argu-

ment proceeds in an analogous manner: Words creatgd by

FIG. 3. After its production by the unperturbed source the per-flips will have a probability given bygg)e'(1— €)("1) and
fectly self-similar sequence is fed into the transmission channeltheir number is denoted b;. This yields a rank-ordered
External white noise<1) flips symbols of the message indepen- word distribution which has a staircase shape. The heights of
dently, thus “contaminating” the sequence. neighboring plateaus vary by a facteand their lengths are

given by the numbersl; .

In passing, we mention that parallels can be established At this point we mention that the true picture might
between self-similarity found in the rank-ordered word dis-slightly deviate since there is a chance that a selected word
tributions and in the field of critical phenomef24]. The  will be multiply addressedecause of it originating from
replacement procedures for the symbols, €14.,12, should different unperturbed words and due to a different total num-
be regarded in analogy to thelock-spin transformation ber of flips. This effect, however, will be suppressed when-
[35]. The relation between block entropi€sd) resembles ever the effective number of words” (for n—) [11] is
the Kadanoff transformatior§34], connecting Hamiltonians much less than the number of all possible woxds in this
formulated at different scales of resolution. The precise forcase different flips most likely will create different words. So
mulation of these analogies should be done in the context ahe above idealization, ignoring multiple addressing, should
the thermodynamic formalisni36], where theH, can be become increasingly better for systems wit 1 — which
regarded ageneralized free energiesf an n-particle sys- is guaranteed for self-similar sequences — and for increasing
tem. word lengthsn. Figure 4 illustrates these explanations.

Inserting the idealized rank-ordered word distribution into
the Shannon functional yields, after some steps of calcula-
tion, the following result:

The above discussed self-similarity of rank-ordered word
distributions is compatible witth=0 only. The question HE<H+nh(e), (19
arises, what happens when noise affects the symbol se-
quence? Denoting the strength of noise by some parametgj,ere
e we expect the entropy of the sourbé to rise slightly

IV. THE EFFECT OF NOISE

above the value zero, i.ehf="f(€)>0. But whether or not () ()

the infinite memory, i.e., the characteristic scaling behavior h(e)= —(1— —) l00,(1—€) — —log,(€) (19
of the H,,, will survive this perturbation is not clear in ad- n n

vance.

In order to clarify this problem we introduce noise in the and the average number of flips explicitly reads
following way: At first the perfectly self-similar symbol se-
guence is created. In a second sweep we randomly flip sym- ) " N; j (n—i)
bols. For a physical motivation we might think of an infor- <l>=j§=:0 NG € (1-e)'" 0. (20)
mation source which emits a message. This message is fed

Into a chann.el, by a transmitter, it passes the _ch_annel and Fhe < sign in(18) is due to multiple addressing which tends
received at its other end. During this transmission procesg

random noise affects the signal. This noise is assumed to tﬁ ihﬁrpﬁnldthe dlstr|but_|onbas explan:ed Tlpcive. dC(;jener_aIIy.,
white, which means the chance to flip a symbol is indepen- i\(J). olds true, again, because ot mu tlp e addressing,
dent of what happens to all other symbols. The probability td'€Nc€{i)=<ne. Insertingne into formula(19) yields
flip a single symbol is parametrized lay For an illustration
see Fig. 3. h(e)<—(1—¢€)log,(1—€)— €log,(e€). (21

In order to develop the consequences most clearly, again,
we consider the binary Feigenbaum sequence and discuss ther the upper bound character on the right side, the closer it
casen=2X. As can be seen from Fig. 1, the rank-ordered@Pproaches an equality relation, the less frequent will be the
2k-word distribution simply is a step function. The influence Multiple addressing, i.e., the smallet and the largen will
of noise will change this unaffected word distribution by be.
creating previously forbidden words; thus all possible words We see that thed[ and hy are shifted by an amount
can be found. Nevertheless, we will find a natural groupinghh(e) andh(e), respectively, with respect to the related val-
of words into classes essentially connected to the number a¢fes of the unperturbed source. Figures 5 and 6 depict the
flips performed with respect to an original wofdamming  theoretical(upper boungiH;, andhf, respectively, in com-
distance. In the limit of very small noise intensit<1, the  parison with numerical data fore=0.01 and e=0.1.
group with the largest probabilities will be formed by the Whereas fore=0.1 the upper bound character clearly is vis-
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10° [ n= T L
| FIG. 4. The rank-ordered word distri-
: butions of the €=0.01) noise contami-
5 o . nated binary Feigenbaum sequence for
10 10° ‘161 ‘ 10 n=2,4,8,16; circles: numerical data,

lines: plateau structure ruled by
Nj(k)=(}) (up to 2" fat, beyond
dashed Multiple addressing of words
gives rise to substructures superposed
onto the dominant staircase structure.

)
% The finite sample lengthl(=10) is re-
% sponsible for the collapse of smallest
= probabilities at the right end.
2
10'8 i sl sl 0 e e
10° 10" 10® 10° 10

rank of n-word

ible for e=0.01 the agreement becomes almost perfect. Nogeneralization to sequences constructed from an alphabet
tice thate=0 corresponds to the unaffected binary Feigen-containing\ letters is given in the Appendix.
baum sequence.

The most impo_rtant result_ is the ?nsight that the_ scaling V. CONCLUSION
relation for dynamical entropies survives the prescribed per-
turbation, at least for sufficiently smadl. Moreover, since We have exemplified the creation of self-similar se-

the above mentioned arguments remain valid for an arbitrarguences by a symbolic dynamics of critical systems. An
system, provided its entrogy’ is sufficiently small, we can equivalent grammatical composition rule allowed for a gen-
extend the result to sequences which obey sufficiently reeralized construction scheme. The self-similar features of the
strictive selection rules, e.g., periodic sequences. Then thgequence itself can be derived employing the last mentioned
entropy of the ‘“noise contaminated” source readsapproach. Moreover, the self-similarity of rank-ordered word
he=h%+h(e). distributions can be traced back to the composition rule. A
In this section we considered binary sequences only. Arery general relation between these self-similar distributions

20 1.5

n n C N
TTTTUTTS
RGO m s msmc o= ===
0.5 T 5y
0.0
0 5 10 15 20 25
n

FIG. 5. Then-block entropiesH;, for the noise contaminated FIG. 6. The conditional entropids;, for the noise contaminated

binary Feigenbaum sequence=0.1 with diamonds(numerica) binary Feigenbaum sequence=0.1 with diamonds(numerica)
and dashed liné&heoretical upper bounde= 0.01 with circles(nu- and dashed linétheoretical; e=0.01 with circles(numerical and
merica) and dotted lingtheoretical upper boundThe unaffected dotted line (theoretical. The unaffected binary Feigenbaum se-
binary Feigenbaum sequence corresponds=t0 with squaregnu- guence corresponds t=0 with squaregsnumerica) and solid line
merica) and solid line(theoretical. (theoretical.
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and universal scaling relations for dynamical entropies couldneans at each position of the unaffected sequence replacing

be established. This insight might help to solve open questhe original symbol by one of thex(-1) complementary
tions related to natural sequences, e.g., DNA, music, or text@nes with probabilitye. The above reasoning for the binary
Self-similar dynamical behavior can be regarded in analogwlphabet essentially is identical and the analogous calcula-
to the scale invariance of critical systems. A perturbation oftions are straightforward.

perfectly self-similar sequences, contaminating them by Equation(18) remains the same but E(L9) changes to
noise-induced symbol flips, is reflected by a rising entropy of

the sourceh® which could be quantified. The infinite

memory survives the considered perturbation in the limit of

small noise, i.e., foe<1. This statement remains valid for
arbitrary systems provideld<<1.
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APPENDIX: GENERALIZATION TO A LARGER
ALPHABET

shift,

h(e)<—(1— €)log,(1— €)— elogx<&). (A3)

In the preceding section we considered the effect of conThis upper bound already was derived by intuitive reasoning

taminating binary sequences relatedhib<1 by indepen-
dently flipping symbols with a probabilitg. A generaliza-
tion to the case of a larger alphabet, consisting. détters,

for a related problem applying to DNA sequences, i.e., for
N=4 (measuring information in bits rather than kits)
[37].
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