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Symbol sequences play a prominent role in the context of symbolic dynamics. Important features of a
dynamical system are reflected by related statistics of subsequences. A dynamical behavior giving rise to a
self-similar attractor and universal scaling relations, expressed by critical exponents, will lead to self-similar
statistics of subsequences. In the present paper we show how self-similar distributions of subsequences, i.e.,
temporal self-similarity, can be connected with a scaling relation for dynamical entropies. Moreover, the effect
of slightly perturbing perfectly self-similar sequences by contaminating them with noise is investigated. The
achieved results are of importance for physical processes marking the borderline between order and chaos.
@S1063-651X~96!11110-7#

PACS number~s!: 87.10.1e, 02.50.2r, 05.45.1b, 05.70.Fh

I. INTRODUCTION

The statistical analysis of chaotic or stochastic systems
usually employs standard tools such as correlation function,
power spectrum, or time-dependent standard deviation. The
method of symbolic dynamics@1# provides the background
for more sophisticated techniques, especially those related to
informational measures, e.g.,n-block entropies@2#, Rényi
entropies@3# or transinformation@4#. Moreover, thesedy-
namical entropiescan be applied to symbol sequences which
are not directly related to dynamical systems but which are
found instead as the result of evolutionary processes, e.g., the
DNA, music, or texts. By defining a unique mapping of sym-
bols onto real numbers correlation function@5#, power spec-
trum @6,7# and time-dependent standard deviation@8# can be
translated but the freedom of choosing the mapping function
introduces some arbitrariness@9#. Throughout this paper we
will concentrate on the concept ofn-block entropies which
essentially is based on Shannon’s measure of syntactical in-
formation assigned to messages@10#.

Let A5$a1 , . . . ,al% be a set of symbols which we will
also call thealphabet In the context of symbolic dyn-
amics subsequences (i 1 , . . . ,i n)PAn of length n, also
namedn-words, have to be regarded as sampled trajectory
segments of lengthnt ~stroboscopic observation with a time
window t). Assuming the sample sequence to be produced
by a stationary and ergodic source@11# —which is a direct
consequence of stationary and ergodic dynamics —we can
do simple word counting, hence, achieving a relative fre-
quency distribution forn-words. The relative frequencies are
used to estimate the underlyingn-word probabilities, in the
following denotedp( i 1 , . . . ,i n).

We note in passing that in practice the finite lengthL of
the sample string poses a severe problem for this estimation.
The reason is a combinatorial explosion of the number of
generally possible wordsln ~respectively the effective num-
ber of wordslhn @11#! which has to be outperformed by the
number @O(L)# of n-words excerpted from the sample

string. Correction formulas designed to cure this disease
@12,13# do not increase the range of reliable estimation by
orders. However, since we will always use an analytical ap-
proach to derive probability distributions, we do not have to
face this problem here.

The prediction of ann-word is connected with an average
uncertainty quantified by the Shannon measure and which
will be named then-block entropyHn ,

Hn :52 (
~ i1 , . . . ,i n!PAn

p~ i 1 , . . . ,i n!loglp~ i 1 , . . . ,i n!.

~1!

We choose log2l bits as the unit of information. This
choice is favorable since then the inequality 0<Hn<n
holds.

A quantity derived from then-block entropies is the
(n-!average uncertainty per symbol@10#, denoted by
H(n):5Hn /n. Its limit for n→` is named theentropy of the
source@14#,

h:5 lim
n→`

H~n!. ~2!

This quantity is closely related to theKolmogorov-Sinai en-
tropy ~KS! @15,16# of a dynamical system. For a wide class
of systems@17# the KS coincides with the sum of positive
Lyapunov exponents according to a famous theorem by
Pesin.

Furthermore, we can define the conditional entropies, de-
noted byhn ,

hn :5Hn112Hn ~n51,2, . . .!. ~3!

We supplement this definition byh0 :5H1. Thehn are inter-
preted as the average uncertainty linked with the prediction
of the symboli n11 given knowledge ofn preceding states
i 1 , . . . ,i n . Correlations existing between the subsequence
( i 1 , . . . ,i n) and the symboli n11 will reduce this average
uncertainty, hence, the series ofhn will decline when in-
creasing the rangen of noticed prehistory. It can be shown
that the limit ofhn for n→` coincides with the limit in~2!,
i.e., limn→`hn5h.*Electronic address: janf@summa.physik.hu-berlin.de
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The decline of the series ofhn approachingh is a charac-
teristic feature of symbol sequences and dynamical systems,
respectively, which produce them. For aMarkov source of
order m @18#—which is defined by the following property of
conditional probabilities:

p~ i n11u i 1 , . . . ,i n!5p~ i n11u i n2m , . . . ,i n! ~;n.m!
~4!

valid for all (i 1 , . . . ,i n11)PAn11 —it can be proven@18#
thathn5Hm112Hm5h holds true for alln>m. This moti-
vates the definition ofm as thememory of the source. Szép-
falusy and co-workers@19# shared this attitude.

The scaling behavior of (hn2h) is directly related to the
effective measure complexity(CEM!, defined by Grassberger
@20#,

CEM :5 (
n50

`

~hn2h!. ~5!

As was noticed by Grassberger@20# and Sze´pfalusy@21,22#,
an exponential decay of the (hn2h) is the typical case, i.e.,
(hn2h);exp(2gn). The corresponding decay rateg can be
expressed in terms of a special Re´nyi entropy, namely,
g52K3 ~for piecewise analytic 1D maps@21#, see also@22#!.
For such systems a Markovian approximation of sufficiently
high orderm ~4! is rather effective. Then it is reasonable to
define the inverse decay rateg21 as an effective memory.

An exceptional behavior is found for systems which mark
the borderline between order and chaos. They play an impor-
tant role in the framework ofdynamical phase transitions
@23#. Comparatively strong correlations — which are not as
trivial as in the case of a periodic sequence — exist over a
wide range and cause the conditional entropies to decay
slower than exponentially (K350!!. Usually an infinite
memory is assigned to systems of that kind. Typical pro-
cesses giving rise to such a behavior are of the intermittent
type @23#. As will be shown below, a subexponential scaling
of (hn2h) can be derived for systems exhibiting the phe-
nomenon of temporal self-similarity, e.g., for the logistic
map at the period doubling accumulation point. It was con-
jectured by Ebeling and Nicolis@2,24# that an infinite
memory generally is encountered in processes related to in-
formation processing systems.

II. CONSTRUCTING SELF-SIMILAR SEQUENCES

The starting point for our considerations is the celebrated
logistic map at the accumulation point
r`53.569 945 67 . . . ,

xn115 f ~xn!5r`xn~12xn!. ~6!

The attractor possesses a self-similar structure@25#. Choos-

ing the bipartition@0,12 #→ ‘‘0’’ and ( 1
2 ,1#→ ‘‘1’’ the sym-

bolic dynamics yields thebinary Feigenbaum sequence. A
first entropy analysis of such a sequence was performed by
Grassberger. For word lengthsn52k he derived a formula
for then-block entropies@20# which reads

Hn52k5 log2S 3n2 D . ~7!

This formula impliesh50 and, by virtue of the Pesin theo-
rem, is in agreement with the zero Lyapunov exponent.

Ebeling and Nicolis@2# supplemented Grassberger’s re-
sult for all values ofn in between two such word lengths.
The basis for their result were empirical rules derived by
observing typical sequences. Numerical simulations@26#
confirmed their theoretical formulas. The fundamental obser-
vation was an overall decay of thehn which is slower than
exponential, namely, according to a 1/n law. Hence, this se-
quence not only possesses an infinite memory but, moreover,
theCEM yields the value infinity.

A quite similar observation was made by Gramss@27#,
who investigated a binary sequence which can be produced
applying the method of symbolic dynamics to the critical
circle map@28,29#. His results were achieved making use of
an equivalent grammatical composition rule for the se-
quence:

b0
b1
bz11

5 ‘‘1’’,
5 ‘ ‘1’ ’,
5 bz+ bz21 ~z51,2, . . .!. ~8!

Here, z is a recursion index andbz+ bz21 symbolizes the
concatenation of the symbol stringsbz and bz21. It is a
simple but important observation that the length of the se-
quencebz equals the Fibonacci numberFz11. The sequence
z` clearly exhibits a self-similar structure: performing the
replacement

‘‘0’’ → ‘‘1’’ and ‘‘1’’ → ‘‘10’’ ~9!

exactly yields the same sequence. The replacement scheme
~9! motivated the namerabbit sequence@30#.

Gramss’ derivation showed that the overall scaling behav-
ior of the Hn again was of a log2n type which leads to
hn;n21. This similarity arouses suspicion that the binary
Feigenbaum sequence should be reproducible in close anal-
ogy. In fact, we could specify the following composition rule

a0
a1,
az11

5 ‘‘1’’
5 ‘‘10’’,
5 az+ az21+ az21 ~z51,2, . . .!.

~10!

Here, the length of the sequenceaz equals the values 2z.
Performing the two replacement schemes

‘‘0’’ → ‘‘11’’ and ‘‘1’’ → ‘‘10’’ ~11!

or

‘‘0’’ → ‘‘11’’ and ‘‘1’’ → ‘‘01’’ ~12!

again leaves the infinite sequencea` invariant. These re-
placement rules can be regarded as special types of the so-
called context-free Lindenmayer systems@31# which have
been investigated as a model for spatial 1/f spectra in@5#.

We point out that composition rules analogous to~8! and
~10! do not necessarily guarantee a 1/n behavior of thehn .
An example demonstrating this clearly is given by

a0
a1
az11

5

5

5

‘ ‘0’ ’,
‘ ‘1’ ’,
az21+ az+ az21.

~13!
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This composition rule produces the periodic string
( ‘‘01’’) ` which yieldsh051 and$hn%n51,2, . . .50.

The empirical rules characterizing the binary Feigenbaum
sequence formulated by Ebeling and Nicolis@2# can be un-
derstood from the grammatical composition rules~10! @32#;
this connection basically rests on three lemmata~analogous
to two lemmata found by Gramss@27#!. In particular, the
rank-orderedn-word distributions can be derived explicitly.
The basic structure of the series of these distributions is
sketched in Fig. 1. We see that self-similarity relates distri-
butions for word lengths 2k↔2k11, 332k21↔332k,
2k11↔2k12. The transition between two such related distri-
butions is achieved simply by rescaling the horizontal and
vertical axis by a factor 2 and12 , respectively~and vice
versa!. This observation is at the heart of the scaling relation
for the n-block entropies and will be elaborated in a gener-
alized approach in the next section.

III. GENERAL SELF-SIMILAR DISTRIBUTIONS

In order to generalize the notion of self-similar rank-
ordered word distribution we list the following basic proper-
ties.

~i! We have a series of word lengths, denoted by
$nk%k5k0

` , which is defined by a function of the indexk, i.e.,

nk5g(k).
~ii ! For every root word of length nk with probability

p( i 1 , . . . ,i nk) there existm offspringsof length nk11, de-

noted (j 1
1 , . . . ,j nk11

1 ), . . . ,(j 1
m, . . . ,j nk11

m ), with equal prob-

ability p( i 1 , . . . ,i nk)/m. Notice that now the probability dis-
tributions are not restricted to the case of piecewise constant
functions as in the case of the binary Feigenbaum sequence.
A schematic sketch of such general self-similar distributions
is depicted in Fig. 2.

We realize that the root word’s probability is equally dis-
tributed among itsm offsprings. It is important to notice that
the termsroot wordandoffspringsare not necessarily meant
in the context of a grammatical root-branching relation. The
reason is that entropies never care about a permutation of
labels which allows for the rank-ordering. In fact, the rela-
tion between a root word and itsm offsprings is governed by
m replacement operations, e.g.,~11,12!, leaving the infinite
sequence invariant.

A few lines of calculation yields the following relation for
thenk-block entropies:

Hnk
5Hnk0

1~k2k0!loglm. ~14!

This is exactly the type of relation for theHnk
already de-

rived for the binary Feigenbaum sequence by Grassberger
@20#: Namely, we only have to realize that in this special case
m52, nk5g(k)52k, k051, andl52, thus arriving at

Hnk52k5H21~k21!log22 ~15!

5 log231 log2
2k

2
~16!

5 log2S 3nk2 D , ~17!

i.e., we perfectly recover~7!. We point out that the logarith-
mic dependence of thenk-block entropies is a direct conse-
quence of the fact that thenk , relating self-similar word
distributions, stretch according to an exponential law, i.e.,
nk5g(k);2k⇒k5g21(nk); log2nk . For the binary
Feigenbaum sequence this function corresponds to
g(k)52k and for the rabbit sequence the series of Fibonacci
numbers can equivalently be represented by the function
g(k)51/A5(g2k2gk) with g5(A521)/2. This explains
the infinite memory, (hn2h);n21, found in both cases and
elucidates its universal character.

We can go further and ask under which conditions we will
find a scaling law of the typeHnk

;Ank; this square root type
growth law has been achieved first by Hilberg@33# and sub-
sequently by Ebelinget al. @2,4#, analyzing realistic texts.
The constructive answer is that we have to inquire the pos-
sibility of composing sequences which yield self-similar
rank-ordered word distributions obeyingnk;k2. However,
no example has been constructed yet and it seems very likely
that creating sequences in a fashion analogous to~8! or ~10!
mostly @see above exception~13!# results in exponentially
growingnk , hence, yielding logarithmic scaling laws for the
Hnk

.

FIG. 1. A schematic plot of self-similar rank-ordered word dis-
tributions of the binary Feigenbaum sequence for different values of
n. The self-similarity relates distributions for word lengths
2k↔2k11, 332k21↔332k, 2k11↔2k12. FIG. 2. Schematic sketch of general self-similar rank-ordered

word distributions; dark shaded regions: root word~top!, m off-
springs~bottom!.
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In passing, we mention that parallels can be established
between self-similarity found in the rank-ordered word dis-
tributions and in the field of critical phenomena@34#. The
replacement procedures for the symbols, e.g.,~11,12!, should
be regarded in analogy to theblock–spin transformation
@35#. The relation between block entropies~14! resembles
the Kadanoff transformation@34#, connecting Hamiltonians
formulated at different scales of resolution. The precise for-
mulation of these analogies should be done in the context of
the thermodynamic formalism@36#, where theHn can be
regarded asgeneralized free energiesof an n-particle sys-
tem.

IV. THE EFFECT OF NOISE

The above discussed self-similarity of rank-ordered word
distributions is compatible withh50 only. The question
arises, what happens when noise affects the symbol se-
quence? Denoting the strength of noise by some parameter
e we expect the entropy of the sourcehe to rise slightly
above the value zero, i.e.,he5 f (e).0. But whether or not
the infinite memory, i.e., the characteristic scaling behavior
of theHn , will survive this perturbation is not clear in ad-
vance.

In order to clarify this problem we introduce noise in the
following way: At first the perfectly self-similar symbol se-
quence is created. In a second sweep we randomly flip sym-
bols. For a physical motivation we might think of an infor-
mation source which emits a message. This message is fed
into a channel, by a transmitter, it passes the channel and is
received at its other end. During this transmission process
random noise affects the signal. This noise is assumed to be
white, which means the chance to flip a symbol is indepen-
dent of what happens to all other symbols. The probability to
flip a single symbol is parametrized bye. For an illustration
see Fig. 3.

In order to develop the consequences most clearly, again,
we consider the binary Feigenbaum sequence and discuss the
casen52k. As can be seen from Fig. 1, the rank-ordered
2k-word distribution simply is a step function. The influence
of noise will change this unaffected word distribution by
creating previously forbidden words; thus all possible words
can be found. Nevertheless, we will find a natural grouping
of words into classes essentially connected to the number of
flips performed with respect to an original word~Hamming
distance!. In the limit of very small noise intensity,e!1, the
group with the largest probabilities will be formed by the

original words, i.e., words found in the unaffected sequence.
Their number is denoted byN0 and their probabilities will be
changed fromp0 :5N0

21 to p0(12e)n. The next group will
comprise all words which are created by flipping only one
symbol. Their probabilities will be (p0)e(12e)n21. The
probability for each member of this group essentially is di-
minished by a factore. The number of words which are
created in this way will be denoted byN1. The line of argu-
ment proceeds in an analogous manner: Words created byj
flips will have a probability given by (p0)e

j (12e)(n2 j ) and
their number is denoted byNj . This yields a rank-ordered
word distribution which has a staircase shape. The heights of
neighboring plateaus vary by a factore and their lengths are
given by the numbersNj .

At this point we mention that the true picture might
slightly deviate since there is a chance that a selected word
will be multiply addressedbecause of it originating from
different unperturbed words and due to a different total num-
ber of flips. This effect, however, will be suppressed when-
ever the effective number of wordslnh ~for n→`) @11# is
much less than the number of all possible wordsln; in this
case different flips most likely will create different words. So
the above idealization, ignoring multiple addressing, should
become increasingly better for systems withh!1 — which
is guaranteed for self-similar sequences — and for increasing
word lengthsn. Figure 4 illustrates these explanations.

Inserting the idealized rank-ordered word distribution into
the Shannon functional yields, after some steps of calcula-
tion, the following result:

Hn
e<Hn

01nh~e!, ~18!

where

h~e!52S 12
^ j &
n D log2~12e!2

^ j &
n
log2~e! ~19!

and the average number of flips explicitly reads

^ j &5(
j50

n

j
Nj

N0
e j~12e!~n2 j !. ~20!

The, sign in ~18! is due to multiple addressing which tends
to sharpen the distribution as explained above. Generally,
Nj<( j

n) holds true, again, because of multiple addressing;
hence,̂ j &<ne. Insertingne into formula ~19! yields

h~e!<2~12e!log2~12e!2e log2~e!. ~21!

For the upper bound character on the right side, the closer it
approaches an equality relation, the less frequent will be the
multiple addressing, i.e., the smallerh0 and the largern will
be.

We see that theHn
e and hn

e are shifted by an amount
nh(e) andh(e), respectively, with respect to the related val-
ues of the unperturbed source. Figures 5 and 6 depict the
theoretical~upper bound! Hn

e and hn
e , respectively, in com-

parison with numerical data fore50.01 and e50.1.
Whereas fore50.1 the upper bound character clearly is vis-

FIG. 3. After its production by the unperturbed source the per-
fectly self-similar sequence is fed into the transmission channel.
External white noise (e!1) flips symbols of the message indepen-
dently, thus ‘‘contaminating’’ the sequence.
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ible for e50.01 the agreement becomes almost perfect. No-
tice thate50 corresponds to the unaffected binary Feigen-
baum sequence.

The most important result is the insight that the scaling
relation for dynamical entropies survives the prescribed per-
turbation, at least for sufficiently smalle. Moreover, since
the above mentioned arguments remain valid for an arbitrary
system, provided its entropyh0 is sufficiently small, we can
extend the result to sequences which obey sufficiently re-
strictive selection rules, e.g., periodic sequences. Then the
entropy of the ‘‘noise contaminated’’ source reads
he5h01h(e).

In this section we considered binary sequences only. A

generalization to sequences constructed from an alphabet
containingl letters is given in the Appendix.

V. CONCLUSION

We have exemplified the creation of self-similar se-
quences by a symbolic dynamics of critical systems. An
equivalent grammatical composition rule allowed for a gen-
eralized construction scheme. The self-similar features of the
sequence itself can be derived employing the last mentioned
approach. Moreover, the self-similarity of rank-ordered word
distributions can be traced back to the composition rule. A
very general relation between these self-similar distributions

FIG. 5. Then-block entropiesHn
e for the noise contaminated

binary Feigenbaum sequence:e50.1 with diamonds~numerical!
and dashed line~theoretical upper bound!; e50.01 with circles~nu-
merical! and dotted line~theoretical upper bound!. The unaffected
binary Feigenbaum sequence corresponds toe50 with squares~nu-
merical! and solid line~theoretical!.

FIG. 6. The conditional entropieshn
e for the noise contaminated

binary Feigenbaum sequence:e50.1 with diamonds~numerical!
and dashed line~theoretical!; e50.01 with circles~numerical! and
dotted line ~theoretical!. The unaffected binary Feigenbaum se-
quence corresponds toe50 with squares~numerical! and solid line
~theoretical!.

FIG. 4. The rank-ordered word distri-
butions of the (e50.01) noise contami-
nated binary Feigenbaum sequence for
n52,4,8,16; circles: numerical data,
lines: plateau structure ruled by
Nj (k)5( j

n) ~up to 2n fat, beyond
dashed!. Multiple addressing of words
gives rise to substructures superposed
onto the dominant staircase structure.
The finite sample length (L5107) is re-
sponsible for the collapse of smallest
probabilities at the right end.
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and universal scaling relations for dynamical entropies could
be established. This insight might help to solve open ques-
tions related to natural sequences, e.g., DNA, music, or texts.
Self-similar dynamical behavior can be regarded in analogy
to the scale invariance of critical systems. A perturbation of
perfectly self-similar sequences, contaminating them by
noise-induced symbol flips, is reflected by a rising entropy of
the sourcehe which could be quantified. The infinite
memory survives the considered perturbation in the limit of
small noise, i.e., fore!1. This statement remains valid for
arbitrary systems providedh!1.
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APPENDIX: GENERALIZATION TO A LARGER
ALPHABET

In the preceding section we considered the effect of con-
taminating binary sequences related toh0!1 by indepen-
dently flipping symbols with a probabilitye. A generaliza-
tion to the case of a larger alphabet, consisting ofl letters,

means at each position of the unaffected sequence replacing
the original symbol by one of the (l21) complementary
ones with probabilitye. The above reasoning for the binary
alphabet essentially is identical and the analogous calcula-
tions are straightforward.

Equation~18! remains the same but Eq.~19! changes to

h~e!52S 12
^ j &
n D logl~12e!2

^ j &
n
loglS e

l21D ~A1!

and the average number of flips generalizes to

^ j &5(
j50

n

j
Nj

N0

e j

l21
~12e!~n2 j !. ~A2!

Again, we can find an upper bound to the source entropy
shift,

h~e!<2~12e!logl~12e!2e loglS e

l21D . ~A3!

This upper bound already was derived by intuitive reasoning
for a related problem applying to DNA sequences, i.e., for
l54 ~measuring information in bits rather than inl i ts)
@37#.
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